Hyperreflexivity of Finite-dimensional Subspaces

نویسنده

  • MAREK PTAK
چکیده

We show that each reflexive finite-dimensional subspace of operators is hyperreflexive. This gives a positive answer to a problem of Kraus and Larson. We also show that each n– dimensional subspace of Hilbert space operators is [ √ 2n]–hyperreflexive.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1-hyperreflexivity and Complete Hyperreflexivity

The subspaces and subalgebras of B(H) which are hyperreflexive with constant 1 are completely classified. It is shown that there are 1-hyperreflexive subspaces for which the complete hyperreflexivity constant is strictly greater than 1. The constants for CT ⊗ B(H) are analyzed in detail.

متن کامل

Frameness bound for frame of subspaces

In this paper, we show that in each nite dimensional Hilbert space, a frame of subspaces is an ultra Bessel sequence of subspaces. We also show that every frame of subspaces in a nite dimensional Hilbert space has frameness bound.

متن کامل

On Reflexivity and Hyperreflexivity of Some Spaces of Intertwining Operators

Let T, T ′ be weak contractions (in the sense of Sz.-Nagy and Foiaş), m, m the minimal functions of their C0 parts and let d be the greatest common inner divisor of m, m . It is proved that the space I(T, T ) of all operators intertwining T, T ′ is reflexive if and only if the model operator S(d) is reflexive. Here S(d) means the compression of the unilateral shift onto the space H⊖dH. In parti...

متن کامل

Finite dimensional subspaces of Lp

We discuss the finite dimensional structure theory of L p ; in particular, the theory of restricted invertibility and classification of subspaces of ℓ n p .

متن کامل

Finite dimensional subspaces of

We discuss the nite dimensional structure theory of L p ; in particular, the theory of restricted invertibility and classiication of subspaces of`n p .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005